52 research outputs found

    SETDB1, HP1 and SUV39 promote repositioning of 53BP1 to extend resection during homologous recombination in G2 cells

    Get PDF
    Recent studies have shown that homologous recombination (HR) requires chromatin repression as well as relaxation at DNA double strand breaks (DSBs). HP1 and SUV39H1/2 are repressive factors essential for HR. Here, we identify SETDB1 as an additional compacting factor promoting HR. Depletion of HP1, SUV39, SETDB1 or BRCA1 confer identical phenotypes. The repressive factors, like BRCA1, are dispensable for the initiation of resection but promote the extension step causing diminished RPA or RAD51 foci and HR in irradiated G2 cells. Depletion of the compacting factors does not inhibit BRCA1 recruitment but at 8 h post IR, BRCA1 foci are smaller and aberrantly positioned compared to control cells. BRCA1 promotes 53BP1 repositioning to the periphery of enlarged foci and formation of a devoid core with BRCA1 becoming enlarged and localised internally to 53BP1. Depletion of the compacting factors precludes these changes at irradiation-induced foci. Thus, the repressive factors are required for BRCA1 function in promoting the repositioning of 53BP1 during HR. Additionally, depletion of these repressive factors in undamaged cells causes diminished sister chromatid association at centromeric sequences. We propose a model for how these findings may be functionally linked

    Characterization of Mouse Tissue Kallikrein 5

    Get PDF
    Mouse tissue kallikreins (Klks) are members of a large, multigene family consisting of 37 genes, 26 of which can code for functional proteins. Mouse tissue kallikrein 5 (KIk5) has long been thought to be one of these functional genes, but the gene product, mK5, has not been isolated and characterized. In the present study, we prepared active recombinant mK5 using an Escherichia coli expression system, followed by column chromatography. We then determined the biochemical and enzymatic properties of purified mK5. mK5 had trypsin-like activity for Arg at the P1 position, and its activity was inhibited by typical serine protease inhibitors. mK5 degraded gelatin, fibronectin, collagen type IV, high-molecular-weight kininogen, and insulin-like growth factor binding protein-3. Our data suggest that mK5 may be implicated in the process of extracellular matrix remodeling

    Parallel Ion Flow Velocity Measurement Using Laser Induced Fluorescence Method in an Electron Cyclotron Resonance Plasma

    Get PDF
    Parallel ion flow velocity along a magnetic field has been measured using a laser induced fluorescence (LIF) method in an electron cyclotron resonance (ECR) argon plasma with a weakly-diverging magnetic field. To measure parallel flow velocity in a cylindrical plasma using the LIF method, the laser beam should be injected along device axis; however, the reflection of the incident beam causes interference between the LIF emission of the incident and reflected beams. Here we present a method of quasi-parallel laser injection at a small angle, which utilizes the reflected beam as well as the incident beam to obtain the parallel ion flow velocity. Using this method, we observed an increase in parallel ion flow velocity along the magnetic field. The acceleration mechanism is briefly discussed on the basis of the ion fluid model

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    Proteomic Biomarkers for Acute Interstitial Lung Disease in Gefitinib-Treated Japanese Lung Cancer Patients

    Get PDF
    Interstitial lung disease (ILD) events have been reported in Japanese non-small-cell lung cancer (NSCLC) patients receiving EGFR tyrosine kinase inhibitors. We investigated proteomic biomarkers for mechanistic insights and improved prediction of ILD. Blood plasma was collected from 43 gefitinib-treated NSCLC patients developing acute ILD (confirmed by blinded diagnostic review) and 123 randomly selected controls in a nested case-control study within a pharmacoepidemiological cohort study in Japan. We generated ∼7 million tandem mass spectrometry (MS/MS) measurements with extensive quality control and validation, producing one of the largest proteomic lung cancer datasets to date, incorporating rigorous study design, phenotype definition, and evaluation of sample processing. After alignment, scaling, and measurement batch adjustment, we identified 41 peptide peaks representing 29 proteins best predicting ILD. Multivariate peptide, protein, and pathway modeling achieved ILD prediction comparable to previously identified clinical variables; combining the two provided some improvement. The acute phase response pathway was strongly represented (17 of 29 proteins, p = 1.0×10−25), suggesting a key role with potential utility as a marker for increased risk of acute ILD events. Validation by Western blotting showed correlation for identified proteins, confirming that robust results can be generated from an MS/MS platform implementing strict quality control

    Response to correspondence on Reproducibility of CRISPR-Cas9 Methods for Generation of Conditional Mouse Alleles: A Multi-Center Evaluation

    Get PDF

    Carbon-Ion Beam Irradiation Kills X-Ray-Resistant p53-Null Cancer Cells by Inducing Mitotic Catastrophe

    Get PDF
    Background and Purpose: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies.Copyright:Materials and Methods: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/ + and p53-/-, respectively) were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA doublestrand breaks (DSBs) by immunostaining of phosphorylated H2AX (γH2AX), and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3.Results: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring longretained DSBs at 24 h post-irradiation.Conclusions: Efficient induction of mitotic catastrophe in apoptosis-resistant p53- deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment
    corecore